(3+)D Optical Engineering

the late Dennis Healy ...

Confocal microscope with volume holographic filter

The volume hologram acts as a depth-selective filter through the *Bragg pinhole* effect.

Barbastathis, Balberg, and Brady *Opt. Let.* **24** (12) 811-813, 1999.

Matched filtering is better suited to propagation properties of light

3D scanning is still required to acquire the entire object

Hologram does not diffract 100% of the light ⇒ potential photon collection deficiency

in Dave Brady's group, circa ~98-99... co-consipators: Bob Plemmons, Sudhakar Prasad, the late Dennis Healy ...

The Duke Imaging and Spectroscopy Program

Compressive phase retrieval

George Barbastathis,^{1,2,3}

Yi Liu,² Wensheng Chen,³ Lei Tian,⁵ Jon Petruccelli,⁶

Zhengyun Zhang,³ Shakil Rehman,³ Chen Zhi,³ Justin W. Lee,⁴ Adam Pan⁴

¹University of Michigan - Shanghai Jiao Tong University Joint Institute 中国;上海市;闵行区;上海交通大学密西根大学学院

Massachusetts Institute of Technology ²Department of Mechanical Engineering ³Singapore-MIT Alliance for Research and Technology (SMART) Centre ⁴Health Sciences and Technology Program

⁵University of California, Berkeley

⁶State University of New York, Albany

Today's talk is about

- Compressive measurements (sparsity priors)
- Coherent light
 - Digital holography and particle localization
- Partially coherent light
 - Phase space and mutual intensity retrieval

Today's talk is about

- Compressive measurements (sparsity priors)
- Coherent light
 - Digital holography and particle localization
- Partially coherent light
 - Phase space and mutual intensity retrieval

Compressive sensing: a simple-minded example

- You drive by a farm with chicken and sheep and count a total of 8 legs:
 - how many chicken and sheep are there?
- **underdetermined** need another equation like "the total number of heads I count is..."
- <u>alternatively we can use a "sparsity prior" in</u> <u>the total # of types of animals</u>.
 - either chicken or sheep

L2

Compressive solution (minimizes LI on the line)

$$\left(\begin{array}{cc}2&4\end{array}\right)\left(\begin{array}{c}c\\s\end{array}\right) = \left(\begin{array}{c}8\end{array}\right)$$

s.t. $|c| + |s| = \min$

Sparse

Generally, of the form $(0, \ldots, 0, \xi, 0, \ldots, 0)$

Sparse spiky signals f(t)= 5f(t)S(t.t)

- \blacksquare Native space: spiky signal \Rightarrow Nyquist sampling necessary
- ➡ Fourier space: smooth signal (superposition of a few sinusoids only) ⇒ fewer than Nyquist samples perhaps suffice
- ➡ To make up for missing samples: L1 minimization

Compressive sensing example

Conventional (L2) reconstruction

DFT measurements (# of samples=12)

O DFT

samples

Compressive (L1) reconstruction

Reconstruction success is subject to sparsity

Fig. 2. Recovery experiment for N = 512. (a) The image intensity represents the percentage of the time solving (P_1) recovered the signal f exactly as a function of $|\Omega|$ (vertical axis) and $|T|/|\Omega|$ (horizontal axis); in white regions, the signal is recovered approximately 100% of the time, in black regions, the signal is never recovered. For each |T|, $|\Omega|$ pair, 100 experiments were run. (b) Cross section of the image in (a) at $|\Omega| = 64$. We can see that we have perfect recovery with very high probability for $|T| \leq 16$.

E. Candés, J. Romberg, and T. Tao, IEEE Trans. Info. Th. 52:489, 2006

The premise of compressive sensing

- Nyquist criterion is too restrictive because it takes no priors into account
- Most signals are *sparse* if expressed in an appropriate basis, e.g.
 - sparse in time "spiky"
 - sparse in frequency "beaty"
- Far **fewer** samples than Nyquist may suffice to completely reconstruct, provided
 - the appropriate basis has been selected
 - sufficient **signal mixing** by the measurement operator
 - "measurement must be **incoherent**"
- Sparsity can then be enforced as a prior (regularizer) by \mathcal{L}_1 norm minimization

Today's talk is about

- Compressive measurements (sparsity priors)
- Coherent light
 - Digital holography and particle localization
- Partially coherent light
 - Phase space and mutual intensity retrieval

The significance of phase

Visible

X-ray

intensity image

phase-contrast image

(F. Zernike, Science 121, 1955)

$$\begin{split} \phi(x_{\mathrm{o}}) &= k \int_{\Gamma} n(\mathbf{r}) \mathrm{d}l & \implies \rho \propto \frac{n^2 - 1}{n^2 + 2} \\ \text{Refractive index} & \text{Density} \\ & & & & \\ & & & \\ & & & & \\ &$$

attenuation image phase-contrast image (human breast cancer specimen) (E. D. Pisano et al., Radiology 214, 2000)

Phase is irrelevant! Optical Path Length (OPL) *is* relevant (and works with partially coherent light)

J. C. Petruccelli, et al, Opt. Express 21:14430, 2013

Phase Imaging

Self-referenced (in-line digital holography)

Digital Holography: Measurement is "incoherent" !

- According to <u>Statistical Optics</u>, a digital hologram is formed by interfering spatially and temporally *coherent* beams (e.g. originating from a HeNe laser)
- According to <u>Compressive Sensing</u> theory, this measurement is "incoherent" because light scattered from the object spreads out over several pixels

Compressive Holography

D. J. Brady, et al Opt. Express 17:13040, 2009.

Compressive localization

Prior: sparsity of object(s) within the field of view

Localization examples

Quantitative measurement of seal whisker motion Quantitative analysis of bubbles and plumes (multi-phase flows)

Emulating a ID whisker: pin object

Yi Liu et al, *Opt. Lett.* 37:3357, 2012

Algorithm diagram

Experimental result

\$

Experimental result

\$

2D object localization

Object

Hologram recording

Multiply spiral phase mask in the Fourier domain

Compressive holography

Reconstruction

Hologram of ring's edges

Whisker vibration experiments

Whisker hologram

Whisker's edges extracted

Whisker's motion reconstructed (pixel size = 10µm

Acknowledgment Heather Beem, Michael Triantafyllou MIT

DH particle localization

DH particle localization

3D reconstruction of a plume (standard back-propagation)

Original hologram

3D Reconstruction

Particle size not to scale

Size distribution analysis

Sharpening the axial accuracy

In a given z plane:

- Sharp features mostly due to in-focus particles
- Smooth features due to:
 - Defocused particles
 - Twin image
 - Halo
 - Noise
- This essentially states a sparsity prior on the edge sharpness

In this case we enforce **sparsity** by evolving the unknown radiance *f* to the steady state of a nonlinear diffusion equation

$$\frac{\partial f\left(\mathbf{x}, z; \tau\right)}{\partial \tau} = \alpha \nabla \cdot \left(F\left(|\nabla f| \right) \frac{\nabla f}{|\nabla f|} \right)$$

F: flux function (notice $F=I \Rightarrow$ linear diffusion)

L. Tian, J. C. Petruccelli, and G. Barbastathis, Opt. Lett. 37:4131, 2012.

Nonlinear diffusion: animation

(movie shows output at every iteration)

L. Tian, J. C. Petruccelli, and G. Barbastathis, Opt. Lett. 37:4131, 2012.

Sharpening the axial accuracy by nonlinear diffusion

NLD in the transverse direction

Flux

L. Tian, J. C. Petruccelli, and G. Barbastathis, *Opt. Lett.* 37:4131, 2012. J. Weickert, *Lecture Notes in Computer Science*, 1252:1, 1997.

Today's talk is about

- Compressive measurements (sparsity priors)
- Coherent light
 - Digital holography and particle localization
- Partially coherent light
 - Phase space and mutual intensity retrieval

Partially coherent light

Random field $U(\mathbf{x})$ Correlation function (mutual intensity)

Young's two-slit experiment

$J(\mathbf{x}, \mathbf{x}') \equiv \langle U(\mathbf{x})U^*(\mathbf{x}') \rangle$

B. J. Thompson and E. Wolf, J. Opt. Soc. Am., 47:895, 1957.

The mutual intensity

 $J(\mathbf{x}, \mathbf{x}') \equiv \langle U(\mathbf{x})U^*(\mathbf{x}') \rangle$

D. L. Marks, R.A. Stack, and D. Brady, Appl. Opt. 38:1332, 1999

The mutual intensity

$$J(\mathbf{x}, \mathbf{x}') \equiv \langle U(\mathbf{x})U^*(\mathbf{x}') \rangle$$

- completely characterizes the (quasi-monochromatic) partially coherent field,
- in particular, the Optical Path Length (OPL);
 - J. C. Petruccelli, L. Tian, and G. Barbastathis, *Opt. Express* 21:14430, 2013
- is analogous to the density matrix in quantum mechanics;
- is semi-positive definite (eigenvalues \geq 0);
- can be decomposed into **coherent modes**

$$J(\mathbf{x}, \mathbf{x}') = \sum_{j} c_{j} \phi_{j}(\mathbf{x}) \phi_{j}^{*}(\mathbf{x}')$$

• often, a case can be made that only few $c_j \neq 0$

Today's talk is about

- Compressive measurements (sparsity priors)
- Coherent light
 - Digital holography and particle localization
- Partially coherent light
 - Phase space and mutual intensity retrieval

The Phase Space

• Wigner distribution function

$$W(x,u) = \int \psi\left(x + \frac{x'}{2}\right)\psi^*\left(x - \frac{x'}{2}\right)\exp\left(-i2\pi u x'\right)dx'$$

>

 $\mathcal{F}_{\substack{x \leftrightarrow u'\\ u \leftrightarrow x'}}$

$$W(x,u) = \int J\left(x + \frac{x'}{2}, x - \frac{x'}{2}\right) \exp\left(-i2\pi u x'\right) \mathrm{d}x$$

• Ambiguity function

$$A(u', x') = \int J\left(x + \frac{x'}{2}, x - \frac{x'}{2}\right) \exp(-i2\pi u'x) \, dx$$

• By the way, W(x, u) is real.

Phase space (Wigner space)

Temporal frequency

point source

spherical wave

WDF shears/rotates upon propagation

boxcar ("rect") function

diffraction from a rectangular aperture

Х

Wavefunction evolution and the WDF

time evolution t

Tomographic measurement from evolution/propagation

time evolution t ξ measurement (quantum demolition)

Phase-space tomography

Phase-space tomography

Phase-space tomography

Quantum phase space tomography

Squeezed state recovery

Matter wave interference

D. Smithey, and et al, Phys. Rev. Lett. 1993

C. Kurtsiefer, and et al, *Nature*, 1997 J. Itatanl, and et al, *Nature*, 2000

Optical phase space tomography

Non-interferometric technique

Spatial coherence measurements of a ID soft x-ray beam

C.Q.Tran, and et al, JOSA A 22, 1691-1700(2005)

The problem of limited data

• Assume intensity symmetric about z=0

Compressive reconstruction of phase-space data

- Sparsity claim: number of *coherent modes*
- Low-Rank Matrix Recovery
 - E. J. Candés and B. Recht, Found. Comp. Math. 9:717, 2009
 - L.Tian, J. Lee, S. B. Oh, and G. Barbastathis, *Opt. Express* 20:8296, 2012
- Factored Form Descent
 - Z. Zhang, S. Rehman, C. Zhi, and G. Barbastathis, *Opt. Express* 21:5759, 2013
- Sparse Kalman filtering
 - J. Zhong, L. Tian, R.A. Claus, J. Dauwels, and L. Waller, *FiO 2013* paper FW6A.9 (post-deadline, today)

Compressive reconstruction of phase-space data

- Sparsity claim: number of coherent modes
- Low-Rank Matrix Recovery
 - E. J. Candés and B. Recht, Found. Comp. Math. 9:717, 2009
 - L.Tian, J. Lee, S. B. Oh, and G. Barbastathis, *Opt. Express* 20:8296, 2012
- Factored Form Descent
 - Z. Zhang, S. Rehman, C. Zhi, and G. Barbastathis, *Opt. Express* 21:5759, 2013
- Sparse Kalman filtering
 - J. Zhong, L. Tian, R.A. Claus, J. Dauwels, and L. Waller, *FiO 2013* paper FW6A.9 (post-deadline, today)

Low Rank Matrix Recovery (LRMR) of phase-space data

- Solution expressed as few coherent modes
- L0 minimization
 - sadly, intractable
 - however [Candes] the problem can be mapped onto an equivalent L1 minimization
- Semi-positive definiteness⇔mode coefficients≥0 additionally enforced as constraint

Exprerimental compressive phase-space tomography

Limited data in our experiment

- Missing angle ϕ_1 : 38°
- Missing angle ϕ_2 :22°

Ground Truth

Filtered back-projection fails

Compressive reconstruction

Error in compressive reconstruction (compared to Van Cittert-Zernike)

Compressive reconstruction of phase-space data

- Sparsity claim: number of *coherent modes*
- Low-Rank Matrix Recovery
 - E. J. Candés and B. Recht, Found. Comp. Math. 9:717, 2009
 - L.Tian, J. Lee, S. B. Oh, and G. Barbastathis, *Opt. Express* 20:8296, 2012
 - Factored Form Descent
 - Z. Zhang, S. Rehman, C. Zhi, and G. Barbastathis, *Opt. Express* 21:5759, 2013
 - Sparse Kalman filtering
 - J. Zhong, L. Tian, R.A. Claus, J. Dauwels, and L. Waller, *FiO 2013* paper FW6A.9 (post-deadline, today)

Factored Form Descent

• coherence mode decomposition: $J = UU^H$

Wolf, JOSA 1982 Ozaktas et al., JOSAA 2002

- solve for U instead of J means semi-positive definiteness is automatically ensured
- quartic, need iterated descent algorithm
 - initialize with fully incoherent guess
 - find search direction, e.g. $\Delta U = ADA^H U$ (steepest descent, NL conjugate gradient)
 - perform (global) line search (solve for roots of cubic polynomial)
 - mutual intensity from singular value decomposition

Z. Zhang, S. Rehman, C. Zhi, and G. Barbastathis, Opt. Express 21:5759, 2013

Experimental Test 51×401 intensity measurements to compute 200×200 mutual intensity matrix

-600

-400

-200

0

200

400

600

-500

x₂ (µm)

error compared to theory

0

x, (µm)

500

0.6

0.5

0.4

0.3

0.2

0.1

(theory assumes perfect lenses, paraxial propagation, uniform LED, infinitesimal pixel size)

experimental

Phase from partially coherent fields

- Compressive reconstruction of the mutual intensity [Tian *Opt. Exp.* 20:8296]
- Factored Form Descent [Zhang Opt. Exp. 21:5756]
- Wigner distribution function recovery from lenslet arrays [Tian Opt. Exp. 21:10511]
- Optical Path Length (OPL) recovery with partially coherent illumination [Petruccelli *Opt. Exp.* 21:14430]

Thanks

- Laura Waller, David Brady, Colin Sheppard
- Singapore's National Research Foundation
- US Department of Homeland Security
- Chevron Technology Company